
CS 61B Spring 2024

Inheritance
Exam-Level 03

CS 61B Spring 2024

Example Agenda

- 1:10 - 1:15 ~ announcements
- 1:15 - 1:30 ~ content review
- 1:30 - 1:40 ~ question 1
- 1:40 - 1:55 ~ question 2

CS 61B Spring 2024

Announcements

● Midterm 1 on Thursday 2/15 7-9
PM

○ Review Session Friday 2/9
11-1PM in Soda labs

● No lab assignment this week
(Project 1 Workday)

● Project 1A due this Monday 2/5

● Project 1B due next Monday 2/12

● Project 1C due Tuesday 2/20

● Weekly Survey 3 due this Monday
2/5

CS 61B Spring 2024

Content Review

CS 61B Spring 2024

Classes
Subclasses (or child classes) are classes that inherit from another class. This means that they have access
to all of the non-private functions and variables of their parent class in addition to any functions and
variables defined in the child class.
Example: Corgi, Pitbull

Superclasses or parent classes are classes that are inherited by another class.
Example: Dog

Dog

Corgi Pitbull

CS 61B Spring 2024

Fun with Methods
Method Overloading is done when there are multiple methods with the same name, but different
parameters.

public void barkAt(Dog d) { System.out.print(“Woof, it’s another dog!”); }
public void barkAt(CS61BStaff s) { System.out.print(“Woof, what is this?”); }

* Food for thought: what is an advantage of method overloading? Hint: think about System.out.print

Method Overriding is done when a subclass has a method with the exact same function signature as a
method in its superclass. It is usually marked with the @Override tag.

In Dog class:
public void speak() { System.out.print(“Woof, I’m a dog!”); }

In Corgi Class, which inherits from Dog:
@Override
public void speak() { System.out.print(“Woof, I’m a corgi!”); }

CS 61B Spring 2024

Interfaces
Interfaces are implemented by classes. They describe a narrow ability that can apply to many classes that
may or may not be related to one another.

They do not usually implement the methods they specify, but can do so with the default keyword.
Interface methods are inherently public, which must be specified in the subclass that implements them
(subclasses must override and implement non-default interface methods).

Interfaces cannot be instantiated. (ie. Friendly f = new Friendly(); does not compile)

Dog

CuteFriendly

CS61BStaff

CS 61B Spring 2024

Interfaces vs. Classes

● A class can implement many interfaces and extend only one class

● Interfaces tell us what we want to do but not how; classes tell us how we want to do it

● Interfaces can have empty method bodies (that must be filled in by subclasses) or
default methods (do not need to be overridden by subclasses)

● With extends, subclasses inherit their parent’s instance and static variables, methods
(can be overridden), nested classes

○ But not constructors!

○ Use super to refer to the parent class

CS 61B Spring 2024

Implementation
interface Cute {...}

interface Friendly {...}

class CS61BStaff implements Friendly {...}

class Dog implements Cute, Friendly {...}

class Corgi extends Dog {...}

class Pitbull extends Dog {...}

CuteFriendly

CS61B Staff Dog

Corgi Pitbull

CS 61B Spring 2024

Static vs. Dynamic Type
A variable’s static type is specified at declaration, whereas its dynamic type is specified at instantiation
(e.g. when using new).

Dog d = new Corgi();

Static type of d is Dog Dynamic type of d is Corgi

The static and dynamic type of a variable have to complement each other or else the code will error. For
example, a Dog is not necessarily a Corgi, so Corgi c = new Dog(); will not compile.

General rule of thumb: Given LHS = RHS, is RHS guaranteed to be a LHS?

Though interfaces cannot be instantiated, they can be static types (ie. Cute c = new Corgi();)

CS 61B Spring 2024

Casting

Casting allows us to tell the compiler to treat the static type of some variable as whatever
we want it to be (need to have a superclass/subclass relationship). If the cast is valid, for that
line only we will treat the static type of the casted variable to be whatever we casted it to.

Animal a = new Dog();
Dog d = a; // Compiler error: an animal is not a dog
Dog d = (Dog) a; // Valid cast: an animal could reasonably be a dog
d = new Dog();
a = (Animal) d // Valid cast: a dog definitely is-a animal
Cat c = new Cat();
d = (Dog) c; // Compiler error: a cat is definitely not a dog
a = c;
d = (Dog) a; // Cast compiles because an animal could reasonably be a dog.

 During runtime, errors

CS 61B Spring 2024

All these concepts - What’s the point?
It allows for Subtype Polymorphism. (You’ll also see this in lecture this week).
Polymorphism means “providing a single interface to entities of different types”

Example:
Consider a variable deque of static type Deque:
When you call deque.addFirst(), the actual behavior is based on the dynamic type.
Deque deque = new LinkedListDeque();// Runs LinkedListDeque’s addFirst
Deque deque = new ArrayDeque();// Runs ArrayDeque’s addFirst

Java automatically selects the right behavior using what is sometimes called “dynamic method
selection”.

CS 61B Spring 2024

Dynamic Method Selection
Your computer. . .
@ Compile Time, we only care about static type of the invoking / calling instance:
1. Check for valid variable assignments
2. Check for valid method calls (only considering static type and static types superclass(es))

a. Lock in exact method signature as soon as we find an adequate one, traversing parent classes
b. “adequate” means (1) same name, (2) argument type (actual) is-a parameter type (defined).

3. If nothing found, compiler error

@ Run Time, we care about dynamic type of the invoking / calling instance:
1. If the locked-in method is static, skip the step below and just run that method
2. Check for overridden methods

a. Does the locked-in method signature have an identical one in the dynamic class or the dynamic
class’s parent classes?

 3. Ensure casted objects can be assigned to their variables

CS 61B Spring 2024

Involves casting?

A x = (B) y;
Is B in a superclass-subclass

relationship with y’s static type?
(No siblings)

A x = y;
Is the static type of y A, or a

subclass of A?

Is B A, or a subclass
of A?

Is the dynamic type of y
B, or a subclass of B?

Compiler error OK!

yes

yes

yes

yes

yes

no

nono

no

Variable assignment rules

no

Runtime error

CS 61B Spring 2024

Worksheet

CS 61B Spring 2024

1 Forget It, We Ball
interface Person {
 void speakTo(Person other);
 default void watch(Athlete other) { System.out.println("wow"); }
}

public class Athlete implements Person {
 @Override
 public void speakTo(Person other) { System.out.println("i love sports"); }
 @Override
 public void watch(Athlete other) { System.out.println("ball is life"); }
}

public class SoccerPlayer extends Athlete {
 @Override
 void speakTo(Person other) { System.out.println("join 61ballers"); }
}

For each line, write what, if anything, is printed after its execution. Write CE if there
is a compiler error and RE if there is a runtime error. If a line errors, continue
executing the rest of the lines.

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person();

3 Athlete aniruth = new SoccerPlayer();

5 SoccerPlayer vanessa = aniruth;

7 Person eric = new Athlete();

9 Athlete shreyas = new Athlete();

11 SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person(); // CE - can’t new interface

3 Athlete aniruth = new SoccerPlayer();

5 SoccerPlayer vanessa = aniruth;

7 Person eric = new Athlete();

9 Athlete shreyas = new Athlete();

11 SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person(); // CE - can’t new interface

3 Athlete aniruth = new SoccerPlayer(); // Athlete, SoccerPlayer

5 SoccerPlayer vanessa = aniruth;

7 Person eric = new Athlete();

9 Athlete shreyas = new Athlete();

11 SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person(); // CE - can’t new interface

3 Athlete aniruth = new SoccerPlayer(); // Athlete, SoccerPlayer

5 SoccerPlayer vanessa = aniruth; // CE

7 Person eric = new Athlete();

9 Athlete shreyas = new Athlete();

11 SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person(); // CE - can’t new interface

3 Athlete aniruth = new SoccerPlayer(); // Athlete, SoccerPlayer

5 SoccerPlayer vanessa = aniruth; // CE

7 Person eric = new Athlete(); // Person, Athlete

9 Athlete shreyas = new Athlete();

11 SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person(); // CE - can’t new interface

3 Athlete aniruth = new SoccerPlayer(); // Athlete, SoccerPlayer

5 SoccerPlayer vanessa = aniruth; // CE

7 Person eric = new Athlete(); // Person, Athlete

9 Athlete shreyas = new Athlete(); // Athlete, Athlete

11 SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

1 Person ayati = new Person(); // CE - can’t new interface

3 Athlete aniruth = new SoccerPlayer(); // Athlete, SoccerPlayer

5 SoccerPlayer vanessa = aniruth; // CE

7 Person eric = new Athlete(); // Person, Athlete

9 Athlete shreyas = new Athlete(); // Athlete, Athlete

11 SoccerPlayer yaofu = new SoccerPlayer(); // SoccerPlayer,
SoccerPlayer

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth);

15 shreyas.speakTo(yaofu);

17 yaofu.speakTo(eric);

19 ((Athlete) yaofu).speakTo(eric);

21 ((Person) yaofu).speakTo(eric);

23 ((Athlete) eric).speakTo(shreyas);

25 ((SoccerPlayer) eric).watch(yaofu);

Athlete aniruth = new SoccerPlayer();

Person eric = new Athlete();

Athlete shreyas = new Athlete();

SoccerPlayer yaofu = new SoccerPlayer();

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu);

17 yaofu.speakTo(eric);

19 ((Athlete) yaofu).speakTo(eric);

21 ((Person) yaofu).speakTo(eric);

23 ((Athlete) eric).speakTo(shreyas);

25 ((SoccerPlayer) eric).watch(yaofu);

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu); // Athlete.speakTo, Athlete.speakTo → i love

sports

17 yaofu.speakTo(eric);

19 ((Athlete) yaofu).speakTo(eric);

21 ((Person) yaofu).speakTo(eric);

23 ((Athlete) eric).speakTo(shreyas);

25 ((SoccerPlayer) eric).watch(yaofu);

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu); // Athlete.speakTo, Athlete.speakTo → i love

sports

17 yaofu.speakTo(eric); // SoccerPlayer.speakTo, SoccerPlayer.speakTo →

join 61ballers

19 ((Athlete) yaofu).speakTo(eric);

21 ((Person) yaofu).speakTo(eric);

23 ((Athlete) eric).speakTo(shreyas);

25 ((SoccerPlayer) eric).watch(yaofu);

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu); // Athlete.speakTo, Athlete.speakTo → i love

sports

17 yaofu.speakTo(eric); // SoccerPlayer.speakTo, SoccerPlayer.speakTo →

join 61ballers

19 ((Athlete) yaofu).speakTo(eric); // Athlete.speakTo,

SoccerPlayer.speakTo → join 61ballers

21 ((Person) yaofu).speakTo(eric);

23 ((Athlete) eric).speakTo(shreyas);

25 ((SoccerPlayer) eric).watch(yaofu);

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu); // Athlete.speakTo, Athlete.speakTo → i love

sports

17 yaofu.speakTo(eric); // SoccerPlayer.speakTo, SoccerPlayer.speakTo →

join 61ballers

19 ((Athlete) yaofu).speakTo(eric); // Athlete.speakTo,

SoccerPlayer.speakTo → join 61ballers

21 ((Person) yaofu).speakTo(eric); // Person.speakTo, SoccerPlayer.speakTo

→ join 61ballers

23 ((Athlete) eric).speakTo(shreyas);

25 ((SoccerPlayer) eric).watch(yaofu);

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu); // Athlete.speakTo, Athlete.speakTo → i love

sports

17 yaofu.speakTo(eric); // SoccerPlayer.speakTo, SoccerPlayer.speakTo →

join 61ballers

19 ((Athlete) yaofu).speakTo(eric); // Athlete.speakTo,

SoccerPlayer.speakTo → join 61ballers

21 ((Person) yaofu).speakTo(eric); // Person.speakTo, SoccerPlayer.speakTo

→ join 61ballers

23 ((Athlete) eric).speakTo(shreyas); // Athlete.speakTo, Athlete.speakTo →

i love sports

25 ((SoccerPlayer) eric).watch(yaofu);

CS 61B Spring 2024

1 Forget It, We Ball

13 eric.watch(aniruth); // Person.watch, Athlete.watch → ball is life

15 shreyas.speakTo(yaofu); // Athlete.speakTo, Athlete.speakTo → i love sports

17 yaofu.speakTo(eric); // SoccerPlayer.speakTo, SoccerPlayer.speakTo → join

61ballers

19 ((Athlete) yaofu).speakTo(eric); // Athlete.speakTo, SoccerPlayer.speakTo →

join 61ballers

21 ((Person) yaofu).speakTo(eric); // Person.speakTo, SoccerPlayer.speakTo →

join 61ballers

23 ((Athlete) eric).speakTo(shreyas); // Athlete.speakTo, Athlete.speakTo → i

love sports

25 ((SoccerPlayer) eric).watch(yaofu); // Athlete.watch, RE

CS 61B Spring 2024

1 Forget It, We Ball

(Optional Challenge) Describe how you would use casting to fix the following lines as described, or
explain why it is not possible.

1. Allow SoccerPlayer vanessa = aniruth; to compile.

2. ((SoccerPlayer) eric).watch(yaofu); so that wow is printed.

3. ((SoccerPlayer) eric).watch(yaofu); so that i love sports is printed.

CS 61B Spring 2024

1 Forget It, We Ball

Describe how you would use casting to fix the following lines as described, or explain why it is not
possible.

1. Allow SoccerPlayer vanessa = aniruth; to compile.

SoccerPlayer vanessa = (SoccerPlayer) aniruth;

2. ((SoccerPlayer) eric).watch(yaofu); so that wow is printed.

3. ((SoccerPlayer) eric).watch(yaofu); so that i love sports is printed.

CS 61B Spring 2024

1 Forget It, We Ball

Describe how you would use casting to fix the following lines as described, or explain why it is not
possible.

1. Allow SoccerPlayer vanessa = aniruth; to compile.

SoccerPlayer vanessa = (SoccerPlayer) aniruth;

2. ((SoccerPlayer) eric).watch(yaofu); so that wow is printed.

Not possible, since at runtime eric is an Athlete, which overrides the watch method.

3. ((SoccerPlayer) eric).watch(yaofu); so that i love sports is printed.

CS 61B Spring 2024

1 Forget It, We Ball

Describe how you would use casting to fix the following lines as described, or explain why it is not
possible.

1. Allow SoccerPlayer vanessa = aniruth; to compile.

SoccerPlayer vanessa = (SoccerPlayer) aniruth;

2. ((SoccerPlayer) eric).watch(yaofu); so that wow is printed.

Not possible, since at runtime eric is an Athlete, which overrides the watch method.

3. ((SoccerPlayer) eric).watch(yaofu); so that i love sports is printed.

Not possible. “i love sports” is only defined in the speakTo method, but we never interact
with it in any way.

CS 61B Spring 2024

2 List Inheritance
Modify the code below so that the max method of DMSList works properly. Assume all numbers inserted into
DMSList are positive, and we only insert using insertFront.

public class DMSList {
 private IntNode sentinel;
 public DMSList() {
 sentinel = new IntNode(-1000, _______);
 }
 public class IntNode {
 // IntNode definition here
 }
 class LastIntNode extends IntNode {
 // LastIntNode definition here
 }
 public int max() {

 return sentinel.next.max();
 }
 public void insertFront(int x) {
 // insert code
 }
}

class LastIntNode extends IntNode {
public LastIntNode() {

_________________;
}

@Override
public int max() {

________________;
}

}

CS 61B Spring 2024

2 List Inheritance
Modify the code below so that the max method of DMSList works properly. Assume all numbers inserted into
DMSList are positive, and we only insert using insertFront.

public DMSList() {
sentinel = new IntNode(-1000,

new LastIntNode());

// other code here
}

class LastIntNode extends IntNode {
public LastIntNode() {

__________________;
 }

 @Override
 public int max() {

__________________;
 }
}

CS 61B Spring 2024

2 List Inheritance
Modify the code below so that the max method of DMSList works properly. Assume all numbers inserted into
DMSList are positive, and we only insert using insertFront.

public DMSList() {
sentinel = new IntNode(-1000,

new LastIntNode());

// other code here
}

class LastIntNode extends IntNode {
public LastIntNode() {

super(0, null);
 }

 @Override
 public int max() {

__________________;
 }
}

CS 61B Spring 2024

2 List Inheritance
Modify the code below so that the max method of DMSList works properly. Assume all numbers inserted into
DMSList are positive, and we only insert using insertFront.

public DMSList() {
sentinel = new IntNode(-1000,

new LastIntNode());

// other code here
}

class LastIntNode extends IntNode {
public LastIntNode() {

super(0, null);
 }

 @Override
 public int max() {

return 0;
 }
}

